Jakarta International Customer Service Institute (JICSI)

With 13 Topic Training Related to

Business Information & Data Management

bg-2
Play Video
  • Modul 1 : BIG DATA BATCH PROCESSING
  • Modul 2 : DESIGN BIG DATA BATCH PROCESSING
    SOLUTIONS
  • Modul 3 : BIG DATA REAL-TIME PROCESSING
    SOLUTIONS
  • Modul 4 : DESIGN BIG DATA REAL-TIME PROCESSING
    SOLUTIONS
  • Modul 5 : OPERATIONALISE END-TO-END CLOUD
    ANALYTICS SOLUTIONS
  • Modul 6 : IMPLEMENTING DATA STORAGE IN AZURE
  • Modul 7 : DATA FACTORIES AND WORKFLOWS
  • Modul 8 : POWERSHELL FOR TECHNOLOGY
    PROFESSIONALS
  • Modul 9 : OPERATIONALISE END-TO-END- CLOUD
    ANALYTICS SOLUTION
  • Modul 10 : SCRIPTING
  • Modul 11 : HDInsight
  • Modul 12 : HOSTING SERVICES ON-PREMISES AND IN
    AZURE
bg-2
Play Video
  • Modul 1 : ESSENTIAL REPORTING REQUIREMENT SKILLS
  • Modul 2 : BUILDING THE EXCEL DASHBOARD – LOOKUP
    DATA
  • Modul 3 : BUILDING THE EXCEL DASHBOARD – FILTERING
    DATA
  • Modul 4 : BUILDING THE EXCEL DASHBOARD – SUBTOTALS
  • Modul 5 : BUILDING THE EXCEL DASHBOARD – PIVOT
    TABLES ANDPIVOT CHARTS
  • Modul 6 : BUILDING THE EXCEL DASHBOARD –
    INTERACTIVE BUTTONS
  • Modul 7 : BUILDING THE EXCEL DASHBOARD –
    FORMATTING
  • Modul 8 : ADVANCED DATA STRUCTURING TECHNIQUES
  • Modul 9 : CHARTING AND VISUALISATION TECHNIQUES
  • Modul 10 : CHARTING AND VISUALISATION TECHNIQUES
  • Modul 11 : MACRO CHARGED REPORTING
bg-2
Play Video
  • Modul 1 : Data Science Overview
  • Modul 2 : Statitical Analysis and Business Applications
  • Modul 3 : Python Environment Setup and Assentials
  • Modul 4 : Mathematical Computing with Python (NUMPY)
  • Modul 5 : Scientific Computing with Python (SCIPY)
  • Modul 6 : Data Manipulation with Pandas
  • Modul 7 : External Barriers to Listening
  • Modul 8 : Machine Learning with Scikit-Learn
  • Modul 9 : Natural Language Processing with Scikit Learn
  • Modul 10 : Data Visulization In Python Using Mat plot-LIB 
  • Modul 11 : Data Visulization In Python Using Mat plot-LIB
  • Modul 12 : Integration with Hadoop Map-Reduce and Spark
bg-2
Play Video
  • Modul 1 : INTRODUCTION
  • Modul 2 : CHARACTERISTICS OF DATA
  • Modul 3 : DATA MODELS
  • Modul 4 : DATA STREAMING
  • Modul 5 : DBMS AND DATA MANAGEMENT
  • Modul 6 : DATA OPTIMISATION
  • Modul 7 : DATA SUPPORTING DECISION-MAKING
  • Modul 8 : DECISION TREES
  • Modul 9 : DESCRIPTIVE ANALYTICS
  • Modul 10 : PREDICTIVE ANALYTICS
  • Modul 11 : PRESCRIPTIVE ANALYTICS
bg-2
Play Video
  • Modul 1 : BIG DATA
  • Modul 2 : BIG DATA HANDS-ON PRACTICE EXERCISE
  • Modul 3 : HADOOP
  • Modul 4 : HADOOP EXERCISES
  • Modul 5 : MAP REDUCE
  • Modul 6 : YARN
  • Modul 7 : Apache HIVE
  • Modul 8 : Apache PIG
  • Modul 9 : IMPALA
  • Modul 10 : SQOOP
  • Modul 11 : UBUNTU
  • Modul 12 : CONFIGURATION MANAGEMENT
bg-2
Play Video
  • Modul 1 : INTRODUCTION
  • Modul 2 : CHARACTERISTICS OF DATA
  • Modul 3 : DATA MODELS
  • Modul 4 : DATA STREAMING
  • Modul 5 : DBMS AND DATA MANAGEMENT
  • Modul 6 : DATA OPTIMISATION
  • Modul 7 : DATA SUPPORTING DECISION-MAKING
  • Modul 8 : DECISION TREES
  • Modul 9 : DESCRIPTIVE ANALYTICS
  • Modul 10 : PREDICTIVE ANALYTICS
  • Modul 11 : PRESCRIPTIVE ANALYTICS
bg-2
Play Video
  • Modul 1 : What are infographics?
  • Modul 2 : Planning layout for infographics
  • Modul 3 : What makes infographics effective?
  • Modul 4 : Selecting the appropriate infographic
  • Modul 5 : Infographics designing process
  • Modul 6 : Designing wireframe
  • Modul 7 : Designing infographics
  • Modul 8 : Use of Charts
  • Modul 9 : Infographics and SEO
  • Modul 10 : Infographics reporting
bg-2
Play Video
  • Modul 1 : BASICS OF INSIGHT GENERATION
  • Modul 2 : THE DIFFERENT DATA SCIENCE FIELDS
  • Modul 3 : INTRODUCTION TO DATA AND DATA SCIENCE
  • Modul 4 : COMMON DATA SCIENCE TECHNIQUES
  • Modul 5 : COMMON DATA SCIENCE TOOLS
  • Modul 6 : BASIC STATISTICS: FOUNDATIONS OF
    QUANTITATIVE INSIGHTS
  • Modul 7 : THE NORMAL DISTRIBUTION AND HISTOGRAMS
  • Modul 8 : MACHINE LEARNING WITH SCIKIT–LEARN
  • Modul 9 : ADVANCED CHARTS AND DASHBOARDS
  • Modul 10 : DEMAND FORECASTING
bg-2
Play Video
  • Modul 1 : DATA ANALYSIS WITH EXCEL
  • Modul 2 : PIVOT TABLES
  • Modul 3 : USING PIVOT TABLES FOR ADVANCED
    CALCULATIONS
  • Modul 4 : AGGREGATE DATA
  • Modul 5 : LAB ENVIRONMENT & INSTALLATIONS
  • Modul 6 : QUERIES
  • Modul 7 : DATA FILTERS & MEASURES
  • Modul 8 : DATA VISUALISATIONS
  • Modul 9 : CASE STUDIES
bg-2
Play Video
  • Modul 1 : Overview of Data Protection and Freedom
    of Information
  • Modul 2 : Principles for Data Collection
  • Modul 3 : Principles for Freedom of Information
  • Modul 4 : Guidelines for Data Sharing
  • Modul 5 : Data Sharing Arrangements in the Public Sector
  • Modul 6 : General Data Protection Regulation (GDPR)
  • Modul 7 : Challenges in Data Protection and Ways to
    Overcome Them
  • Modul 8 : Challenges in Information Sharing and Ways to
    Overcome Them
bg-2
Play Video
  • Modul 1 : Why data visualization ?
  • Modul 2 : Data Visualization Process
  • Modul 3 : Use of Mapping
  • Modul 4 : Use of Bar Graphs
  • Modul 5 : Use of Pie Charts
  • Modul 6 : Use of Histograms
  • Modul 7 : Use of Line Graphs
  • Modul 8 : Use of Scatter Plots
  • Modul 9 : Challenges in Data Visualization
  • Modul 10 : Current Trends
  • Modul 11 : Excel Activity
bg-2
Play Video
  • Modul 1 : BASICS OF INSIGHT GENERATION
  • Modul 2 : THE DIFFERENT DATA SCIENCE FIELDS
  • Modul 3 : INTRODUCTION TO DATA AND DATA SCIENCE
  • Modul 4 : COMMON DATA SCIENCE TECHNIQUES
  • Modul 5 : COMMON DATA SCIENCE TOOLS
  • Modul 6 : BASIC STATISTICS: FOUNDATIONS OF QUANTITATIVE INSIGHTS
  • Modul 7 : THE NORMAL DISTRIBUTION AND HISTOGRAMS
  • Modul 8 : DATA VISUALISATION
  • Modul 9 : ADVANCED CHARTS AND DASHBOARDS
  • Modul 10 : DEMAND FORECASTING
bg-2
Play Video
  • Modul 1 : THE ANALYTICS PROCESS MODEL
  • Modul 2 : UNDERSTAND THE ORGANISATION AND DEFINE THE PROBLEM
  • Modul 3 : RESEARCH DESIGNS AND DATA COLLECTION METHODS
  • Modul 4 : PLANNING THE DATA COLLECTION PROJECT
  • Modul 5 : SAMPLING
  • Modul 6 : EXPLORATORY RESEARCH: SECONDARY DATA
  • Modul 7 : EXPLORATORY RESEARCH: INTERVIEWS
  • Modul 8 : DESCRIPTIVE RESEARCH: SURVEYS
  • Modul 9 : EXPLORATORY DATA ANALYSIS
  • Modul 10 : PREPARING THE DATA